Superconvergent error estimates for position-dependent smoothness-increasing accuracy-conserving (SIAC) post-processing of discontinuous Galerkin solutions
نویسندگان
چکیده
Superconvergence of discontinuous Galerkin methods is an area of increasing interest due to the ease with which higher order information can be extracted from the approximation. Cockburn, Luskin, Shu, and Süli showed that by applying a B-spline filter to the approximation at the final time, the order of accuracy can be improved from O(hk+1) to O(h2k+1) in the L2-norm for linear hyperbolic equations with periodic boundary conditions (where k is the polynomial degree and h is the mesh element diameter) [Math. Comp. (2003)]. The applicability of this filter for linear hyperbolic problems with non-periodic boundary conditions was computationally extended and renamed a position-dependent smoothness-increasing accuracy-conserving (SIAC) filter by van Slingerland, Ryan, Vuik [SISC (2011)]. However, error estimates in the L2-norm for this new position-dependent SIAC filter were never given. Furthermore, error estimates in the L∞-norm have not been established for the original kernel nor the position-dependent kernel. In this paper, for the first time we establish that it is possible to obtain O(hmin{2k+1,2k+2− d 2 }) accuracy in the L∞-norm for the position-dependent SIAC filter, where d is the dimension. Furthermore, we extend the error estimates given by Cockburn et al. so that they are applicable to the entire domain when implementing the position-dependent SIAC filter. We also computationally demonstrate the applicability of this filter for visualization of streamlines.
منابع مشابه
General spline filters for discontinuous Galerkin solutions
The discontinuous Galerkin (dG) method outputs a sequence of polynomial pieces. Post-processing the sequence by Smoothness-Increasing Accuracy-Conserving (SIAC) convolution not only increases the smoothness of the sequence but can also improve its accuracy and yield superconvergence. SIAC convolution is considered optimal if the SIAC kernels, in the form of a linear combination of B-splines of ...
متن کاملSmoothness-Increasing Accuracy-Conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries
8 Accurate approximations for the derivatives are usually required in many application areas such as biomechanics, chemistry and visualization applications. With the help of Smoothness-Increasing AccuracyConserving (SIAC) filtering, one can enhance the derivatives of a discontinuous Galerkin solution. However, current investigations of derivative filtering are limited to uniform meshes and peri...
متن کاملSmoothness-Increasing Accuracy-Conserving (SIAC) Filtering for Discontinuous Galerkin Solutions: Improved Errors Versus Higher-Order Accuracy
Smoothness-increasing accuracy-conserving (SIAC) filtering has demonstrated its effectiveness in raising the convergence rate of discontinuous Galerkin solutions from order k + 2 to order 2k + 1 for specific types of translation invariant meshes (Cockburn et al. in Math. Comput. 72:577–606, 2003; Curtis et al. in SIAM J. Sci. Comput. 30(1):272– 289, 2007; Mirzaee et al. in SIAM J. Numer. Anal. ...
متن کاملEfficient Implementation of Smoothness-Increasing Accuracy-Conserving (SIAC) Filters for Discontinuous Galerkin Solutions
The discontinuous Galerkin (DG) methods provide a high-order extension of the finite volume method in much the same way as high-order or spectral/hp elements extend standard finite elements. However, lack of inter-element continuity is often contrary to the smoothness assumptions upon which many post-processing algorithms such as those used in visualization are based. Smoothness-increasing accu...
متن کاملPosition-Dependent Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for Improving Discontinuous Galerkin Solutions
Position-dependent smoothness-increasing accuracy-conserving (SIAC) filtering is a promising technique not only in improving the order of the numerical solution obtained by a discontinuous Galerkin (DG) method but also in increasing the smoothness of the field and improving the magnitude of the errors. This was initially established as an accuracy enhancement technique by Cockburn et al. for li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2014